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ABSTRACT

Image segmentation has been an important area of study in computer vision. Image seg-

mentation is a challenging task, since it involves pixel-wise annotation, i.e. labeling each

pixel according to the class to which it belongs. In image classification task, the goal is

to predict to which class an entire image belongs. Thus, there is more focus on the ab-

stract features extracted by Convolutional Neural Networks (CNNs), with less emphasis on

the spatial information. In image segmentation task, on the other hand, the abstract infor-

mation and spatial information are needed at the same time. One class of work in image

segmentation focuses on “recovering” the high-resolution features from the low resolution

ones. This type of network has an encoder-decoder structure, and spatial information is

recovered by feeding the decoder part of the model with previous high-resolution features

through skip connections. Overall, these strategies involving skip connections try to prop-

agate features to deeper layers. The second class of work, on the other hand, focuses on

“maintaining" high resolution features throughout the process.

In this thesis, we first review the related work on image segmentation and then introduce

two new models, namely Unet- Laplacian and Dense Parallel Network (DensePN). The

Unet-Laplacian is a series CNN model, incorporating a Laplacian filter branch. This new

branch performs Laplacian filter operation on the input RGB image, and feeds the output to

the decoder. Experiments results show that, the output of the Unet-Laplacian captures more

of the ground truth mask, and eliminates some of the false positives. We then describe the

proposed DensePN, which was designed to find a good balance between extracting features

through multiple layers and keeping spatial information. DensePN allows not only keeping

high-resolution feature maps but also feature reuse at deeper layers to solve the image

segmentation problem. We have designed the Dense Parallel Network based on three main

observations that we have gained from our initial trials and preliminary studies. First,
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maintaining a high resolution feature map provides good performance. Second, feature

reuse is very efficient, and allows having deeper networks. Third, having a parallel structure

can provide better information flow. Experimental results on the CamVid dataset show

that the proposed DensePN (with 1.1M parameters) provides a better performance than

FCDense56 (with 1.5M parameters) by having less parameters at the same time.
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CHAPTER 1

INTRODUCTION

In this chapter, the image segmentation problem will be discussed together with its potential

applications. Then, the method proposed in this thesis will be introduced.

1.1 Image Segmentation

Image segmentation has been an important area of study in computer vision. Image seg-

mentation involves processing an image, and labeling each pixel according to the class to

which it belongs. When there are only two classes, and each pixel is classified either as

foreground or background, it is called binary segmentation. On the other hand, if there are

more than two classes, it is called semantic segmentation. Different methods have been

proposed for image segmentation, which can be broadly classified into two categories: i)

Hand-crafted approaches, ii) neural network-based methods.

1.1.1 Hand-crafted Approaches

Hand-crafted approaches typically rely on features, such as edges, extracted from images

by various algorithms. This approach involves understanding and abstracting the prob-

lem into a function, and then optimizing this function to reach the desired results. These
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methods can be classified into threshold-based, edge-based, block-based, graph-based, and

active-contour based methods.

The basic idea behind the threshold-based methods [17–22] is to calculate one or more

thresholds, and then to compare the pixel values with these thresholds to decide to which

class each pixel belongs. Edge-based methods [23–25], on the other hand, rely on edges

to perform the image segmentation task. Edges represent discontinuities in pixel values,

and can represent object boundaries. In block-based methods [26–28], similarity rules

are used to divide images into blocks, and topology operations are employed to finish the

segmentation. Graph-based methods [29–33] build an energy function for an image and

minimize it to segment an image into foreground and background. The active-contour

based approach [34–36] starts with a manually chosen initial contour, which gradually

gets closer to an object’s boundary and wraps around the object by minimizing an energy

function.

1.1.2 Neural Network-based Approaches

With the availability of increasing amounts of computational power with decreasing prices,

neural network-driven approaches have become popular in recent years. Many methods

have been proposed, including ones involving deep neural networks. These approaches

typically need large amounts of training data, which is fed to the neural network architec-

ture to minimize a loss function, and train the model.

Image segmentation can be considered as a coarse-to-fine classification. Thus, almost

every classification model can be modified to support the segmentation task. In recent

years, many powerful models have been published to perform image segmentation [3–5,7–

13, 37–39]. The common idea is to use an encoder-decoder structure to segment images.

Along the encoder path, also called the down path, model shrinks the resolution of the

feature map, but also abstracts high-level features from the data. The decoder path, also

called up path, is used to recover the resolution and provide an output, which has the same
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resolution as the input image. But due to down-sampling, feature map will loose spatial

information, which is problematic for up path’s recovery. Methods have been proposed to

address this [3, 7–10, 12, 37].

1.2 Image Segmentation Applications

Image segmentation has wide-ranging and important applications. With the development

of new neural-network architectures, providing highly accurate results, more application

scenarios have resulted.

• Medical Applications: Image segmentation methods can be used for different med-

ical applications. Radiologists can use image segmentation to segment areas of in-

terest from medical images including X-rays and CT images. Image segmentation

has fund use in dermatological applications, wherein unhealthy skin regions are seg-

mented and classified from RGB images. There has been challenges organized for

this application as well [40–42]. Segmentation can also be used to segment each

frame of a series of medical images of organs to reconstruct the 3D model inside

human body.

• Autonomous Driving: Image segmentation plays an important role in autonomous

driving applications, wherein it is very important to recognize pedestrians and other

vehicles, locate lanes and crosswalks, and detect traffic signs, signals, etc. Correctly

understanding the scene and traffic is very important for this application. Performing

pixel-wise classification via image segmentation can help self-driving cars to fully

understand the traffic scenario.

• Mapping and Traffic Control: Image segmentation is also used to process aerial

images, and segment roads, buildings etc. to provide traffic information as well as
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building detailed maps. Combined with the drone technology, people can get real-

time traffic reports and use that information to plan their travels and navigation.

• Entertainment Industry: In movie industry, actors are extracted from the back-

ground, and then background is changed to any desired scene to create astonishing

affects. Image segmentation methods can provide a more precise and better segmen-

tation, and also speed up the process.

1.3 Problem Statement

Semantic image segmentation is a challenging problem, since the algorithm needs to fully

understand the difference between targets (foreground) and the background, and label each

pixel with a class label. In the past, people needed to understand the internal relationships

between images which typically required expert knowledge. Deep learning methods, on

the other hand, can learn good features by using large number of labeled images or training

data. Thus, they do not require hand-crafted features and provide a way to decrease the

need for domain expert’s knowledge.

In recent years, with the development of various Convolutional Neural Network (CNN)-

based architectures [1, 2, 39, 43, 44], image segmentation accuracy has improved signifi-

cantly. Methods using CNNs perform convolution and down sampling at each layer, which

causes loosing spatial information, which is important to estimate the pixel locations. To

address this, methods have been proposed [3, 7–10, 12, 37] using skip connections.

There are works using high-low-high resolution subnetworks in series, also known as

auto-encoder/decoder type architecture [3]. This kind of architecture uses subnets that are

made up from convolutional layers to down-sample and capture abstract features from input

images. Then, up-sampling methods, such as bilinear or trans-convolution [45], are used

to recover higher resolution. This kind of methods vary in detail, but the general main idea
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is recovering high resolution.

When CNNs become deeper and deeper, the gradient vanishing problem arises, limiting

the depth. He et al. [1] introduced a deep residual learning framework, ResNet, to address

this problem, which uses skip connections performing identity mapping, and features heavy

batch normalization. With this approach, they were able to train a neural network with 152

layers. Huang et al. [2] introduced the Dense Convolutional Network (DenseNet), which

connects each layer to every other layer in a feed-forward fashion. This approach was

useful to alleviate the vanishing-gradient problem, and strengthen feature propagation. It

also reduces the number of parameters.

Overall, these strategies involving skip connections try to propagate features to deeper

layers. This strategy can also be found in auto-encoder/decoder type of segmentation meth-

ods, such as Unet [6], FCN [3], and deeplab-v3+ [8].

In this thesis, the goal is to find a good balance between extracting features through

multiple layers and keeping spatial information. This work has been inspired by the work of

Sun et al. [15], which was proposed for human pose estimation. In [15], the high-resolution

of feature maps is maintained throughout the process instead of the traditional way of

recovering them through a decoder. They start from a high-resolution subnetwork as the

first stage, and gradually add high-to-low resolution subnetworks, and connect the multi-

resolution subnetworks in parallel. In this thesis, in addition to using adding subnetworks

in parallel, we will employ skip connections, as described in [2], to propagate features and

encourage feature reuse. We propose a new CNN-based architecture, which will henceforth

be referred to as Dense Parallel Network (DensePN). DensePN allows not only keeping

high-resolution feature maps but also but also feature reuse at deeper layers to solve the

image segmentation problem.
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CHAPTER 2

IMAGE SEGMENTATION LITERATURE

AND BACKGROUND

In this chapter, the history of image segmentation work is reviewed, and the neural network-

based image segmentation methods are introduced.

2.1 Background and History

Object recognition work has its origins in the early 1960s [46]. In the beginning, hand-

crafted approaches were introduced and became popular. In these approaches, human

knowledge is used to understand the pixel relationships in images, and to guide the build-

ing of a model to segment images. The relationships between pixels can be in terms of

gray-level intensities, colors, textures etc. In different image modalities, these kinds of re-

lationships can become more complicated. For instance, for medical images, the texture

and colors of different pixels or areas are highly similar, which makes it harder for the

hand-crafted methods to extract features and segment out the target regions. Thanks to

their powerful ability of feature extraction, the deep learning based models are becoming

more and more popular for the image segmentation task.
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2.1.1 Artificial Neural Networks

Artificial neural networks (ANN) aim to mimic the biological neural networks, which are

the building blocks of human brain. The ambition to understand natural intelligence en-

courages people to build intelligent machines [47]. ANNs are composed of artificial neu-

rons, which are modeled to mimic biological neurons. Signals flowing in biological neu-

rons are analog electrical signals, whereas they are digital values for artificial neurons. As

seen In Figure 2.1, the output of each artificial neuron is computed by using a function

of the sum of the input signals with some added bias. The connections between artifi-

cial neurons, i.e. edges, have an adjustable weight, and are used to simulate the learning

process.

Fig. 2.1: Structure of an artificial neuron

The function mentioned above is called the activation function. There are different

choices for the activation function, but there are some more common functions, which

have been proven to work well. Such functions include the sigmoid function [48] and

ReLU (Rectified Linear Unit) [49]. Since probability of an event is in the range [0,1],

sigmoid function is also used to predict the probability in the output of the last layer in

classification networks. When the input of the sigmoid function is large, as seen in Figure

2.2, the gradient will be very small, which consequently will influence the learning speed of

the model. On the other hand, ReLU is much easier to calculate, and it will not shrink down

the gradient when input is large. Therefore, ReLU is one of the most popular activation
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functions used in CNNs and deep learning architectures.

Fig. 2.2: Different activation functions; Sigmoid (on the left) and ReLU (on the right).

A basic architecture for an example ANN is shown in Figure 2.3. It has an input layer,

a hidden layer and an output layer. Neurons in the neighboring layers are connected by

weighted edges. To use this type of ANN for processing (possibly classifying) gray im-

ages, we need to first flatten the two-dimensional images to one dimensional vectors. This

flattened vectors are then used as the input to the ANN.

Fig. 2.3: Artificial neural network architecture

2.1.2 Convolutional Neural Networks

Similar to ANNs, Convolutional Neural Networks (CNNs) are also inspired by biological

visual cortex structure [50]. CNNs are widely used in deep learning. A CNN includes con-

volutional layers and fully connected layers. The output of a convolutional layer is called
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a feature map, which usually is a 3 dimensional tensor with dimensions width, height and

depth. The convolutional layer uses a filter to process inputs or feature maps, similar to the

filtering operation in image preprocessing. The main difference is that with traditional im-

age preprocessing, the weights (values) of the filter is hand-crafted, whereas in CNNs, they

are learned from data during training. Output of a convolutional layer corresponds to the

receptive field in the input feature map and the size of the receptive field is determined by

the kernel size and dilation. With CNNs, it is not necessary to flatten the images. However,

to feed the features maps, which are the outputs of convolutional layers, to the fully con-

nected layers flattening must be performed. Fully connected layers are the same as ANNs

described above, although ANN is the broader name for all artificial neural networks, which

include CNNs. Fully connected layers learn the linear and non-linear relationships between

extracted features, and classify each sample into two or more abstract classes. Figure 2.4

shows a simple CNN architecture.

Fig. 2.4: A simple CNN architecture

There are also pooling layers [51] between convolutional layers. They are used to down

sample the feature maps and reduce the number of parameters, thus the computational com-

plexity, of the model. Average pooling and max pooling are the two most commonly used

types of pooling layers. As their names suggest, average pooling takes the average of the

values on the feature map corresponding to a kernel, which slides through the whole fea-
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ture map. Max pooling, on the other hand, takes the maximum value in the neighborhood

corresponding to the kernel position on the feature map. Figure 2.5 shows the difference

between these two pooling types. The pooling layers do not have parameters that need to

be learned during training. The stride in the convolutional layer can also be used to replace

the pooling layers.

Fig. 2.5: Average Pooling and Max Pooling in a 2x2 neighborhood.

Batch normalization (BN) [52] is another important component of a CNN architecture.

Similar to normalizing the inputs images, BN normalizes the feature maps at the output of

a convolutional layer. BN subtracts the batch mean and divides the values in the feature

map by batch standard deviation so that the distribution of feature maps will be the same.

Consequently, BN reduces the value shift in hidden layers. BN provides more freedom on

the initialization of kernel weights. In addition, higher learning rates can be used, since BN

makes sure that there is no activation diverging to very large values. Furthermore, it also

has some regularization effects like a dropout layer, since it adds some noise to the feature

maps. Both BN and dropout layers will act differently during training and evaluation.

In deep learning, we want the probability density function of the model pdf(model) to

be as close to the true real data distribution pdf(real) as possible. However, we only have

limited amount of training data available. Thus, the goal becomes to make pdf(model)

as close to pdf(train) as possible, by training on a dataset that represents the real-world

application domain. To achieve better representation, a sufficiently large training dataset is

needed. When the training dataset is not large enough, there will be a large error between

pdf(real) and pdf(train). In other words, even though we achieve to obtain a model pdf

close to pdf(train), it will not be able to perform well with pdf(test) which is a sample
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Convolutional kernel
Batch Normalization

ReLU
Dropout

Table 2.1: Components of a convolutional layer

of pdf(real). This is called the overfitting problem. When overfitting happens, model will

fail to fit future observations. To avoid overfitting, dropout [53] is used, which randomly

chooses some neurons and ignores them in the training process. Incoming and outgoing

edges to a dropped-out node are also removed. By avoiding to train with all nodes, dropout

decreases the problem of overfitting, and also improves the training speed. The components

of a classic convolutional layer are shown in Table 2.1.

Most of the trainable parameters are at fully-connected layers in a CNN. Fully con-

nected layers can have outputs as the categories for image classification or as regressions,

which represent bounding boxes [54]. We can also use convolutional layer work as fully-

connected layers to do the same task in more efficient way [55]. In image segmentation

task, the output is a mask with the same resolution as input images instead of a class. We

can use 1x1 kernel as the output layer to shrink the depth same as desired classes [3], which

will provide the model with pixel-wise classification ability.

Training a CNN involves two steps, namely a forward and a backward step. In for-

ward step, we feed the CNN with input information flow. In each layer, feature maps are

calculated with preset weights and bias to get the input for the next layer. In the output

layer, a loss value will be calculated by using a loss function on the difference between

the calculated output and the ground truth. In backward step, chain rule is used to com-

pute the gradients of loss value for every trainable parameter. Then, these gradients are

used to update every parameter for the next iteration. This kind of update is why CNNs can

‘learn’. After enough iterations, when the loss value converges to an acceptable small value,

the training process can be stopped. The loss function is used to calculate the difference

or error between the outputs and ground truth. When loss function is used as the guide,
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minimizing loss means minimizing the difference between pdf(model) and pdf(train).

The loss function will vary for different applications and goals. Cross-entropy is a very

commonly-used loss function, since it can measure the similarity/difference between two

distributions.

There are also different optimizer choices to guide how to update the network parame-

ters. Stochastic Gradient Descent (SGD) [56] and Adam [57] are two choices. In general,

SGD will provide a better result with a low learning speed. It will take many iterations to

reach a good result. SGD maintains a single learning rate, which does not change during

training. Adam, on the other hand, is faster to converge, since it uses a vector of learning

rates, which are adapted as learning progresses. Keskar and Socher [58] present a hybrid

strategy and show that using Adam and then switching to SGD results in better perfor-

mance, and closes the generalization gap.

2.1.3 Feature Reuse

With the introduction of deeper and deeper neural networks, the general observation has

been that increasing the depth of the network also increases the performance [59]. With

increasing number of convolutional layers in deeper CNNs, a new problem, called gradient

vanishing, emerges.

ResNet [1] and DenseNet [2] address the gradient vanishing problem in different ways.

ResNet uses identity connections to pass previous feature map to the next one. Figure 2.6

shows the structure of a residual block. Instead of training stacked convolutional kernels

to fit to the desired mapping, let’s say H(x), ResNet is designed to make its two-kernel fit

to F (x) = H(x) − x. The original mapping is recast into F (x) + x. They state that the

residual mapping, i.e. F (x), is much easier to optimize. Even in the extreme case of the

identity being the optimize option, model will lead F (x) to zero. Taking advantage of such

structure, networks with over 100 layers could be trained. The ResNet was evaluated [1]

on the ImageNet dataset with a depth of up to 152 layers. The authors [1] also presented
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an analysis on CIFAR-10 with 100 and 1000 layers.

Fig. 2.6: ResNet residual block [1].

Targ et al. [59] introduced a new architecture called ResNet in ResNet (RiR), which is

a generalized residual architecture that combines residual networks and standard convolu-

tional networks in parallel residual and non-residual streams.

Xie et al. [60] presented ResNeXt, by adding a new dimension called ‘cardinality’.

They use a multi-branch approach instead of only one branch as in ResNet. It uses incep-

tion [61–63] split-transform-merge strategy on ResNet to achieve higher performance.

DenseNet [2] is different from ResNet [1], which uses skip connections to reuse previ-

ous feature maps. Instead, DenseNet connects each layer to every other layer using con-

catenation. For each layer, the input is all the previous feature maps concatenated together.

This is a very straightforward way to reuse features. The input features are accumulated af-

ter each convolutional layer, and each convolutional layer outputs a feature map with fixed

depth (growth rate). The topology of DenseNet is dense, and the total number of param-

eters is decreased because of the fixed depth. With the concatenation of all feature maps,

it can perform deep supervision like Deeply Supervised Networks [64]. Figure 2.7 shows

a basic Dense Block of DenseNet. Here, we did not draw all the feature maps from all

the previous layers entering into the concatenate operator. These connections are implicitly

represented by the recursive concatenation.
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Fig. 2.7: Dense Block [2], the circle with ‘C’ represents recursive concatenation.

2.2 Related Work

In image classification problem, the goal is to predict the class of the whole image, and

thus there is more focus on the abstract feature information from the CNN model, with less

emphasis on the spatial information. In image segmentation problem, on the other hand,

we care about the abstract information and spatial information at the same time. Abstract

information is used to predict which class the input belongs to, and spatial information

is used to predict where the corresponding pixel is. As the information flows forward

through pooling layers, the spatial information will decrease, and meanwhile, the feature

map becomes higher level and more abstract. To perform pixel-wise classification, we need

to balance the weights of spatial information and abstract features. Figure 2.8 shows this

contradiction between classification and localization.
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Fig. 2.8: Relation between feature abstraction and spatial information for CNNs.

The most general structure used in the image segmentation models is the encoder-

decoder structure. Fully Convolutional Network (FCN) [3] is an extension of CNN, ob-

tained by adding up-sampling layers to normal CNN structure to recover the spatial infor-

mation (Figure 2.9). It uses skip connections to gradually up-sample the previous features

and sums the corresponding low-level features, feeding multi-scale spatial information for

recovery. Since FCN uses convolutional layers in the output layer, it does not need inde-

pendent design for different resolution of images.

U-net [37], which was designed for biomedical image segmentation, is similar to FCN

in terms of both down-sample up-sample structure. However, U-net uses concatenation,

instead of sum, for skip connection (Figure 2.10).

Chen et al. [8] introduces DeepLabv3+ (Figure 2.11) with atrous superable convolution

for semantic image segmentation. They include spatial pyramid pooling to segment targets

at different scales, and fuse the low and high resolution features together similar to U-net.

D-LinkNet [9] uses residual blocks as the encoder part and uses dilated convolution to

ensemble multi-scale features together (Figure 2.12). It iteratively up-samples every scale

of feature map and adds them together as the decoder part. The encoder part of SegNet [5]

is the same as VGG16 [65] with 13 convolutional layers. In decoder part, SegNet computes

pooling indices while doing the down sampling by max pooling (Figure 2.9). Then, it uses

these indices to do non-linear up-sampling. DeconvNet [4] uses VGG 16 layers as the
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encoder. In the decoder part, it uses deconvolution (transpose convolution) and up-pooling.

Fully Combined Convolutional Network (FCCN) [10,38] modifies FCN, by using mul-

tiple steps of up-sampling and combining feature maps in pooling layers with correspond-

ing up-pooling layers (Figure 2.13). The aforementioned methods all use low-resolution

feature maps to recover the high-resolution final outputs. All of them have down-sampling/up-

sampling structure or encoder/decoder structure, usually with a skip connection as well.

FCDense [7] uses dense blocks instead of convolutional layer, and it has the same

topology structure as U-net. Thanks to the dense block’s structure, it can significantly

reduce the number of parameters.

Unlike previous work, Full resolution Convolutional Networks (FrCN) [11] can learn

the full resolution features without down-sampling and skip connections (Figure 2.14).

Because of the lack of down-sampling, this method will not perform well in multi-class

semantic segmentation.

Li et al [12] introduced Y-Net, a Y-shape network architecture, which contains two-arm

feature extraction module (Y1, Y2) and a branch for feature fusion (Y3), as seen in Figure

2.15. Y1 is similar to U-net, Y2 is similar to FrCN, and Y3 is a simple series of convolutional

layers. Y1 is a down-samplin/up-sampling structure and its output is a full resolution feature

map. Y2 is a full-resolution convolution structure. Both branches’ outputs are concatenated

together and fed through Y3 to provide the final output.

RCNN and its derivatives [39, 66, 67] employ a region-based method for image seg-

mentation. In the beginning, region-based CNN was proposed to solve the object detection

problem by predicting the location of bounding boxes of different objects in images. In

RCNN, a region of interest (RoI) is calculated, and the class of RoI is predicted. Faster

RCNN uses a CNN region proposal sub-network to create RoI, which is not precise enough

for image segmentation. Mask RCNN modifies the RoI pooling of faster RCNN. In addi-

tion, mask RCNN adds another sub-network to build the mask for the image segmentation

task. Comparing Faster RCNN and Mask RCNN, we can observe that they share the same
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encoder part, but have different decoders. Moreover, from FCN, U-net, DeepLabv3+ and

D-LinkNet (Figures 2.9, 2.10, 2.11, 2.12), we can see that the encoder part topologies are

highly similar, and all constructed by series of convolutional layers.

Fig. 2.9: Basics of FCN [3], Deconv [4], and SegNet [5] network architectures.

Fig. 2.10: U-net [6] and FCDenseNet [7] main network architectures
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Fig. 2.11: DeepLab-v3p [8] network architecture
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Fig. 2.12: D-LinkNet [9] network architecture

Fig. 2.13: FCCN [10] network architecture
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Fig. 2.14: FrCN [11] network architecture

Fig. 2.15: Y-Net [12] network architecture

Architectures in Figures 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15 all use series of convolu-

tional layers, some with skip connections some not.

There are also parallel information flow architectures for image segmentation. UNet++ [13],

shown in Figure 2.16, is a nested version of the original UNet, in which encoder and de-

coder sub-networks are connected through the dense skip connections. The dense skip

connection path fills the gap between the encoder and decoder. Convolutional neural fab-

rics [14], seen in Figure 2.17, connect multi-scale convolutional layers and a sparse homo-

geneous local connectivity pattern. The ensemble network can fuse all features together,

and provides a prediction. High-Resolution Net (HRNet) [15], shown in Figure 2.18, starts

with a full resolution layer and gradually adds high-to-low resolution sub-networks one by
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one to form more stages and to connect multi-scale feature maps in parallel. Interlinked

CNN [68] consists of multi-scale CNNs and uses and interlink layer to allow the CNNs ex-

change information. GridNet [69] follows a grid pattern allowing multiple interconnected

streams to work at different resolutions. Multi-scale DenseNet [16], shown in Figure 2.19,

uses multi-scale convolutions and progressively generates new feature maps used in fol-

lowing layers.

Our proposed approach (Dense Parallel Network), which is introduced in Section 4.2, is

different from the DenseNet in the following ways: (i) DenseNet has been proposed for the

object recognition task; and (ii) DenseNet structure does not have an up-sampling path, and

cannot keep full resolution feature maps. Figures 2.16, 2.17, and 2.18 show the topology

of parallel flow networks.

Fig. 2.16: Unet++ [13] network architecture
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Fig. 2.17: Convolutional neural fabric [14] network architecture

Fig. 2.18: HRNet [15] architecture
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Fig. 2.19: Multi-scale DenseNet [16] architecture

We have designed the Dense Parallel Network based on three main observations that

we have gained from our initial trials and preliminary studies. First, maintaining a high-

resolution feature map provides good performance. Second, feature reuse is very efficient,

and allows having deeper networks. Third, having a parallel structure can provide better

information flow. We have obtained very promising results presented in Section 4.2.
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CHAPTER 3

UNET-LAPLACIAN

3.1 Overview

In this chapter, we present the network architecture that we developed based on U-net [37].

As briefly mentioned above, U-net reuses the previous high-resolution maps by concatenat-

ing them to Up path to enhance the spatial information, which is very important for the de-

coder part to do the segmentation. In our network, we incorporate edge features/information

to this network. The idea is that the edge information is useful for the decoder just like the

previous high-resolution features.

Laplacian filter has been used to enhance edge information and to detect edges. In our

network, which will henceforth be referred to as Unet-Laplacian, we add a new Laplacian

branch. This new branch performs Laplacian filter operation on the input RGB image, and

uses multi-scale max pooling to make the resolution match the corresponding decoder fea-

tures. The Laplacian filter uses a constant weight convolution kernel for implementation

shown in Figure 3.1. Experimental results show that Unet-Laplacian provides slight im-

provement over the original U-net. The output of the Unet-Lapl closely follows that of the

original U-net, but the output of Unet-Lapl captures more of the ground truth mask.
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Fig. 3.1: The Laplacian filter used in the proposed Unet-Laplacian.

3.1.1 Model Details

The architecture of the Unet-Laplacian is shown in Figure 3.2. We use an extra, almost

computationally free, branch called Laplacian branch to enhance the edge information

compared to U-net. The architecture can be divided into four parts: Down path, Bottleneck

Conv, Up path and Laplacian path. The details of each block we used in Unet-Laplacian

are provided in Table 3.1.

Conv Block

3x3 same convolution + ReLu

3x3 same convolution + ReLu

(a) Conv Block

Down Block

2x2 MaxPool

Conv Block

(b) Down Block

Up Block

2x2 Up-sampling nearest

3x3 same convolution + ReLu

(c) UpSample

Table 3.1: Blocks of Unet-L

The Down path includes 4 Down blocks. We use two 3x3 same convolution layer

followed by ReLU as a basic Convolution block. The Down blocks include a 2x2 MaxPool

layer followed by basic Conv blocks. Up path includes 4 Up blocks.

The up-sample layer includes a nearest up-sampling layer followed by a 2x2 convolu-

tional layer and ReLU. A single Up block includes an up-sample layer. Every concatena-

tion operation combines 3 different features together along depth dimension. The output

is given by a 1x1 convolutional layer followed by a soft-max layer. For given output, if

the probability is larger than 0.5, we classify it as an object and the rest as background.
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The Laplace path is a simple one that uses a MaxPool layer, to sample the inputs to proper

size, followed by a Laplacian filter. The summary of Unet-Laplacian is shown in Table 3.2.

Since the Laplacian filter is only a constant convolutional kernel, it doe not add much to

the computational budget.
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Main Branch

Input, c=3

Conv Block 1, c=64

Down Block 2, c=128

Down Block 3, c=256

Down Block 4, c=512

Dropout,p(0.5), c=512

Up Block 4, c=256

Concat(Up4, Lap4, Down4), c=1027

Conv Block, c=512

Up Block 3, c=256

Concat(Up3, Lap3, Down3), c=515

Conv Block, c=256

Up Block 2, c=128

Concat(Up2, Lap2, Down2), c=259

Conv Block, c=128

Up Block 1, c=64

Concat(Up1, Lap1, Down1), c=121

Conv Block, c=64

3x3 convolution layer + ReLu, c=2

Softmax, c=1

(a) Architecture of the main branch. c means

num of channels. Concat layer describe the con-

catenate rule.

Laplace Branch

Input, c=3

– 3x3 Laplace1 c=3

2x2 Maxpool, c=3 3x3 Laplace2 c=3

4x4 Maxpool, c=3 3x3 Laplace3 c=3

8x8 Maxpool, c=3 3x3 Laplace4 c=3

(b) Architecture of the Laplace Branch, c means

num of channels. Laplace 1 get from Input. Laplace

2, 3 and 4 get from correspoding maxpool layer. All

maxpool layers connect to Input layer

Table 3.2: Architecture of Unet-L, there are two branches, main branch and laplace branch.
Check Figure 3.2
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3.2 Experiments

The cost of building annotated image segmentation datasets is very high, since the ground

truth needs pixel wise annotation. Especially in a special purpose area, such as biomedical

imaging, the requirement for expert knowledge makes it even harder to build and maintain

large annotated datasets.

We have trained and evaluated our proposed Unet-Laplacian and compared it with U-

net on ISIC and IDRiD datasets. Below, we will first describe these two datasets.

3.2.1 ISIC Skin Cancer Dataset

Regular image datasets do not rely on expert’s knowledge too much. They can use a web

server asking people with common knowledge to help annotate/segment the images. How-

ever, for medical images, the ground truth mask can only be provided by experts who have

worked on or have expertise with a specific disease. In addition, the protection of patient

privacy, results in limited number of medical images.

Skin cancer is the most common malignancy diagnosed in United States [70]. Melanoma,

a kind of skin disease, develops from the pigment-containing cells. An estimated number

of 96,480 new cases of melanoma and 7,230 deaths due to melanoma have been reported

in the United States in 2019 [70]. A good segmentation method predicting the boundary of

skin lesion can help dermatologists make early diagnosis.

The International Skin Imaging Collaboration (ISIC) is an international effort to im-

prove melanoma diagnosis. The ISIC2018: Skin Lesion Analysis Towards Melanoma De-

tection [41, 71] Task1: Lesion Boundary Segmentation dataset includes 2594 images of

skin lesion and response masks for training. It also includes 100 pairs of images for vali-

dation and 1000 images for testing. Since pigment-containing cells occur on the surface of

the skin, all images in ISIC2018 dataset were captured by dermoscopy, which is an image

technology that eliminates the surface reflection of skin, which will help to improve the
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visualization of skin lesion samples. Figure 3.3 shows example images together with the

ground truth masks from the dataset.

Fig. 3.3: Example images from the ISIC2018 dataset. Top row: input RGB images; bottom
row: the ground truth mask.

3.2.2 IDRiD Diabetic Retinopathy Images

IDRiD dataset [42] provides data with the aim of segmenting the retinal lesions from dia-

betic retinopathy images. There is a total of 81 RGB images with pixel-wise ground truth.

We randomly split the dataset, and use 54 images for training and 27 for validation. The

images are pixel-wise annotated for optic-disk (OD), microaneurysms (MA), soft exudates

(SE), hard exudates (EX) and hemorrhages (HE). The corresponding binary mask is indi-

vidually provided for each class. Figure 3.4 shows example images from the IDRid dataset.

Fig. 3.4: Exampleimages from the IDRiD dataset, together with the ground truth for hard
exudates.
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3.2.3 Training

We have trained and evaluated our proposed Unet-Laplacian and compared it with U-net

on the ISIC and IDRiD datasets described above. Both models were trained from scratch

without any extra data or pre-training process. We evaluated the results by using Intersec-

tion over Union (IoU) and pixel-wise accuracy. IoU is described by using the test statistics

shown in Table 3.3. TP (ci), FP (ci), FN(ci) and TN(ci) stand for true positive, false

positive, false negative and true negative, respectively, for class ci.

GT

Present Absent

positive true positive false positive
P

negative false negative true negative

Table 3.3: Test statistics terms for class c. GT stands for ground truth, P stands for Predic-
tion.

Let IoU(c) denote the IoU for class c. Mean IoU, mIoU , is the average of IoU for all

classes. Equations below described how to calculate IoU and mIoU .

We can describe IoU of class c using IoU(c). Mean IoU i.e. mIoU is the average

of IoU along class. Equations (3.1) and (3.2) show how IoU and mIoU are calculated,

respectively.

IoU(ci) =
TP (ci)

TP (ci) + FP (ci) + FN(ci)
i = 1...|c| (3.1)

mIoU =

∑|c|
1 IoU(ci)

|c|
(3.2)

We implemented original U-net and compared it with our proposed Unet-Laplacian

model. Since the original U-net does not apply batch normalization, we also implemented

U-net with batch normalization (Unet-bn) and also Unet-Laplacian with batch normaliza-

tion (Unet-Lapl-bn).
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Since masks of test images are unavailable for the ISIC dataset, we have compared

the results on the validation data. We initialized the Unet-Laplacian model by xavier nor-

mal and using Adam [57] optimizer with constant learning rate of 1e-4. The drop rate of

Dropout layer was set as 0.5. We monitored IoU on validation split every 5 epochs and

saved the best (highest) one. For all experiments, we used the same training rules and same

dataset split. We resized the input RGB images to 256x256 resolution. We also applied

random vertical and horizontal flip for training data augmentation. The Laplacian filter

with kernel size 3 is applied on R, G, B channels of the input image. The loss function we

used with U-net and Unet-Laplacian is Cross enctropy + 1− iou.

3.2.4 Results and Discussion

As mentioned above, since masks of test images are unavailable for the ISIC dataset, we

have compared the results on the validation data. Table 3.4 shows the results. As can be

seen, the proposed Unet-Lapl provides some improvement over the original U-net. Com-

pared to original U-net, Unet-Lapl increases the IoU by 0.26%. We can also see that for

both U-net and Unet-Lapl, using batch normalization provides improvement.

Model IoU

Unet 0.80827

Unet-bn 0.82393

Unet-Lapl 0.81037

Unet-Lapl-bn 0.82399

Table 3.4: Results of Unet-Laplacian model on the ISIC dataset.

Since better results were obtained with batch normalization on the ISIC dataset, we only

trained the batch normalization version of both models on the IDRiD dataset. Table 3.5

shows the results on the IDRiD dataset. Except for the class of SoftExudates, the proposed

Unet-Lapl increases the IoU for all classes. But due to having very limited data in this
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dataset (only 54 for training and 27 for validation), Microaneurysms are barely detected,

and we cannot say that the results on this dataset are convincing.

IoU
Model

Optic Disc Hard Exudates Microaneurysms Haemorrhages SoftExudates
mIoU

Unet-bn 0.93146 0.35268 0.02143 0.27916 0.45861 0.40866

Unet-Lap-bn 0.93271 0.38351 0.03064 0.30494 0.42585 0.41552

Table 3.5: Results of Unet-Laplacian model on IDRiD dataset.

Experimental results show that Unet-Laplacian provides slight improvement over the

original U-net. Some example outputs on the ISIC dataset and the IDRiD Hard Exudates

dataset are presented in Figures 3.5 and 3.6, respectively. As can be seen, the output of the

Unet-Lapl closely follows that of the original U-net, but the output of Unet-Lapl captures

more of the ground truth mask. From the results, we can conclude that the Laplacian filter

carries input edge information to the decoder to help model to predict a better segmentation

mask.

Fig. 3.5: The results of ISIC dataset, from left to right are original input, ground truth,
Unet-bn, Unet-Lap-bn respectively
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Fig. 3.6: The results of IDRiD Hard Exudates dataset, from left to right are original input,
ground truth, Unet-bn, Unet-Lap-bn respectively
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CHAPTER 4

DENSE PARALLEL NETWORK

4.1 Overview

In this chapter, we will describe our proposed Dense Parallel Network (DensePN) for im-

age segmentation. DensePN combines ideas from feature reuse architectures [1–3, 7], HR-

Net [15] and Multi-scale DenseNet [16]. As we concluded at the end of Section 2.2, feature

reuse and parallel convolution are the main ideas that guided us through the design of the

DensePN. HRNet maintains the full resolution throughout the whole process without the

need of recovering the high resolution from low resolution. In addition, fusing multi-scale

features helps the model to get a reliable high-resolution representation.

In DensePN, in addition to using adding subnetworks in parallel, we employ skip con-

nections to propagate features and encourage feature reuse. DensePN allows not only keep-

ing high-resolution feature maps but also feature reuse at deeper layers to solve the image

segmentation problem. We designed the DensePN to reuse features, and perform paral-

lel convolution, for image segmentation task, while being parameter efficient at the same

time. DensePN has a similar structure as multi-scale DenseNet [16], but there are two main

differences between them. First, multi-scale DenseNet does growth convolution then con-

catenates the multi-scale features. However, DensePN involves multi-scale features into
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growth convolution. Second, multi-scale DenseNet is designed for image classification,

and does not contain the up-sample path.

In this chapter, we compare the DensePN with FCDenseNet [7], since it is the best per-

forming network with the smallest parameter size. FCDenseNet uses dense blocks instead

of common convolutional layers to build a U-shape Net. Thanks to the power of DenseNet,

FCDenseNet has very few parameters for a relatively deep Network (1.5M parameters for

FC-DenseNet56 (56 filters) and 9.4M parameters for FC-DenseNet103 (103 filters)). Ex-

perimental results have shown that our proposed DensePN provides better mIoU than FC-

Dense56 under the same split conditions on the CamVid dataset. In addition, our proposed

DensePN has only 1.1M parameters, compared to the 1.5 M parameters of FCDense56.

This corresponds to 26.6% reduction in the number of the parameters.

4.1.1 Review of DenseNet, HRNet and FCDenseNet

DenseNet

Let xl represent the output of lth layer, and let Hl represent a non-linear transformation at lth

layer. In a common CNN layer, the input of Hl is the output xl of the previous layer. In other

words, we can describe the output of lth layer as xl = Hl(xl−1). In traditional CNNs, the

non-linear transformation Hl(xl−1) is defined as Hl(xl−1) = Bn(Drop(ReLU(wlxl−1 +

bl))), where Bn() denotes batch normalization [52] operation, Drop() is the dropout [53]

operation and ReLU() is the ReLU [49] activation function.

In order to overcome the vanishing gradient problem [72], happening with very deep

networks, ResNet [1] introduced a residual block, which adds the identity connection to

the output of a layer. This structure can be represented as xl = Hl(xll − 1) + xl−1. This

structure allows feature reuse, and the gradient can flow through from beginning to end.

DenseNet [2] recursively concatenates all previous features to current features, which,

in each dense block, can be represented as xl = Hl([xl−1, xl−2, ..., x0]). Each layer l in

a dense block has k output features by growth convolution and the k named growth rate.
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This connection pattern strongly enhances feature reuse, and layers all under a directly deep

supervision [64]. Because of the relatively small k (k = 16 in our experiments), the dense

block is more parameter efficient than ResNet and traditional CNNs.

HRNet

A series CNN model usually processes the multi scale features in series rather than reusing

them by skip connections [3, 5, 6, 9, 11, 65]. In a series pattern, information flows through

all layers in current scale then flows to the next scale. This means that multi-scales features

are only fused at skip connection at the decoder part.

HRNet, on the other hand, is a parallel model. It uses a feature exchange layer to fuse

multi-scales features and feeds it back to following multi-scale layers. Its architecture is

shown in Figure 2.18. Different from HRNet, our DensePN fuses the multi-scales features

by skip connections used in DenseNet. The multi-scales features are fused by growth

convolution.

FCDenseNet

FCDenseNet is built from dense blocks used in DenseNet. Its network structure is similar to

U-net. The difference is that FCDenseNet uses dense blocks instead of the traditional con-

volutional layers used in U-net. Considering its small number of parameters, FCDenseNet

is currently the-state-of-the-art architecture on the CamVid dataset (which will be described

below). In the original paper [7], the authors proposed different versions of FCDenseNet,

namely FCDense56, FCDense67 and FCDense103. These versions have 1.5M, 3.5M and

9.4M parameters, respectively.

In [7], they first used low resolution images with a relatively large learning rate. Next,

they retrained models with smaller learning rate with high resolution to refine the results.

In our study, we perform comparison with FCDense56 and train both networks with low

resolution images and compare the results. It is worth to mention that after fine tuning,
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the small model FCDense56 already outperforms popular architectures, which have at least

100 times more parameters. Our proposed DensePN only has 73.4% of the parameters of

FCDense56. Models for the segmentation task and their corresponding number of param-

eters are shown in Table4.1.

Model SegNet Bayesian SegNet DeconvNet FCN8 DeepLab-LFOV Unet FCDense56 FCDense67 FCDense103 DensePN

Parameters 29.5M 29.5M 252M 134.5M 37.3M 28.9M 1.5M 3.5M 9.4M 1.1M

Table 4.1: Parameters of image segmentation models

4.2 Model Details of the Proposed DensePN

The details of our proposed DensePN architecture are shown in Figure 4.1. Table4.2 lists

details of the each block shown in Figure 4.1. The down stage contains 3 down Blocks. We

set the output of first conv block as 32. The growth rate used in DensePN is 16. Each row

can be seen as a Dense Block in DenseNet [2]. In forward process, the information flows

through the down stage and then recursively follows the up path to the output layer.
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Conv Block

3x3 same convolution

Batch Normalization

ReLU

Dropout

(a) Conv Block, the basic con-

volutional block

Down Block

3x3 stride=2 convolution

Batch Normalization

ReLU

(b) Down Block, using kernel size

3x3 and stride equal to 2 instead

of MaxPool to do the downsample

Up Block

2x2 Up-sampling nearest

3x3 same convolution

Batch Normalization

(c) UpSample, using nearest up-

sample method followed by a 3x3

convolutional layer to up-sample

features

First Conv

3x3 same convolution

Batch Normalization

ReLU

(d) First Conv, extend the in-

put feature in depth and as the

stem of the network

Table 4.2: Blocks of DensePN
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Fig. 4.1: Dense-Parallel-Network architecture. The most left side shows the resolution
scales of feature maps. 1x scale: full resolution. 2x scale: half the height and width. The
little number below features or at right side of up path arrows are depth of feature map

We defined the traditional convolutional blocks used in DensePN. It contains a 3x3

convolutional block with padding equal to 1, followed by batch normalization, a ReLU

activation function and a dropout operation. Each common convolutional block outputs

16 channel features (growth rate equal to 16 i.e k=16). The down block is composed of a

3x3 convolutional layer with stride 2 instead of pooling layer to do down sampling, batch

normalization is followed by ReLU. The up path is composed of 2x2 nearest up-sample,

3x3 convolution with padding 1 and batch normalization. The first conv is used as a stem

and it is composed of 3x3 convolution with padding 1, batch normalization and ReLU.

4.3 Experiments

We have trained and evaluated the FCDense56 and our proposed DensePN on the Cambridge-

driving Labeled Video Database (CamVid) [73, 74]. It is the first collection of videos of

a city scene with object class semantic segmentation masks. CamVid dataset includes 11
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different classes including ‘building’, ‘tree’, ‘sky’, ‘car’ and ‘pedestrian’. Figure 4.2 shows

example images from the CamVid Dataset.

Fig. 4.2: Example images from the CamVid dataset.

We used the same split of the dataset as in [5] (same as FCDenseNet [7]). More specif-

ically, we used 367 images for training, 101 images for validation and 233 images for

testing. We resized the input images to 256x256 resolution and used vertical and horizon-

tal flips for data augmentation. We evaluated the results by using Intersection over Union

(IoU) and mIoU along classes, and monitored the variation of mIoU to save the weights for

testing.

We trained the FCDense56 using the same training rules as the original paper [7],

wherein they use two different scales of images to train the model. First they train the

model with 224x224 resolution and then retrain it with 360x480 resolution. Because of the

time constraint, we trained the FCDense56 only one time with 256x256 resolution (same

as DensePN).

For DensePN, Xavier normal method is used to initialize the weights. Adam optimizer

was used with initial learning rate of 1e-3, and decay half at every 100 epochs. For regu-

larization, we set weight decay as 2e-4 and drop rate as 0.2.
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4.3.1 Results and Discussion

The results comparing FCDense56 and our proposed DensePN on the CamVid dataset

are shown in Table 4.3. From this table it can be seen that the number of parameters of

DensePN is 26.7% less than those of FCDense56. Moreover, DensePN provides 0.5105

of mIoU compared to the 0.4655 mIoU of FCDense56. The DensePN outperforms the

FCDense56 on seven of the 11 classes, namely the classes of ‘sky’, ‘building’, ‘tree’,

‘sign_symbol’, ‘fence’, ‘car’ and ‘pedestrian’.

IoU
Modle Parameters

sky building pole road pavement tree sign_symbol fence car pedestrian bicyclist
mIoU

FCDense56 1.5M 0.9029 0.6383 0.2533 0.905 0.7163 0.5872 0.14 0.1346 0.4071 0.2457 0.1897 0.4655

DensePN 1.1M 0.9153 0.729 0.1832 0.8788 0.6778 0.6565 0.1903 0.3147 0.6203 0.2763 0.173 0.5105

Table 4.3: The results of FCDense56 and DensePN.

The example segmentation outputs are shown in Figures 4.3 and 4.4.
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Fig. 4.3: The outputs of DensePN and FCDense56 on the CamVid dataset. The left half
from top to bottom are the input images and ground truth segmentation. The upper right
half are the results of FCDense56 and the lower right half are the results of DensePN.
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Fig. 4.4: The outputs of DensePN and FCDense56 on the CamVid dataset. The left half
from top to bottom are the input images and ground truth segmentation. The upper right
half are the results of FCDense56 and the lower right half are the results of DensePN.
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Our DensePN architecure implicitly contains the benefits of DenseNet, namely feature

reuse, deep supervision and parameter efficiency. In addition, it maintains the high resolu-

tion features throughout whole process. The parallel structure recursively feeds the abstract

information from multi-scale features to high resolution features. These advantages allow

the DensePN to handle the semantic segmentation task with relatively lower number of

parameters.

We calculated the training loss after every epoch, and graphed the losses for FCDense56

and DensePN on left side of Figure 4.5. We also calculated the losses during validation

after every five epochs, and presented the result on the right hand side of Figure 4.5. As

can be seen, the training loss of FCDense56 is lower than the DensePN. However, the loss

of DensePN is lower than FCDense56 during validation. This means that DensePN has less

overfitting.

In a similar way, we obtained the graphs for the mIoU for both networks and show the

results in Figure4.6. Same conclusions can be arrived from this figure, i.e. DensePN has

less overfitting than FCDense56.

Fig. 4.5: Losses of FCDense56 and DensePN, Left: train losses. Right:validation losses.
Red:FCDense56, Green:DensePN
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Fig. 4.6: mIoU of FCDense56 and DensePN, Left:train mIoU, Right:validation mIoU.
Red:FCDense56, Green:DensePN
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CHAPTER 5

CONCLUSION

In this thesis, we have studied different network models and approaches to perform image

segmentation. More specifically, we have worked on, and proposed two different networks,

namely Unet-Laplacian and DensePN.

The series network model we proposed, referred to as UNet-Laplacian, was inspired

by U-net [6]. UNet reuses the previous high-resolution maps by concatenating them to

Up path to enhance the spatial information, which is very important for the decoder part

to do segmentation. Since object boundaries correspond to edges, we have proposed to

include edge information in this framework in addition to the high-resolution feature maps.

Laplacian filter is commonly used for edge detection. In our proposed UNet-Laplacian,

we have added a new Laplacian branch, which performs the Laplacian filter operation on

the input RGB image, and uses multi-scale max pooling to make the resolution same as

the corresponding decoder features. The Laplacian filter can be implemented as a con-

stant weight convolution kernel, and thus does not add any significant computational cost.

Experimental results show that the proposed Unet-Laplacian provides slight improvement

over the original U-net. The output of the Unet-Lapl closely follows that of the original U-

net, but the output of Unet-Lapl captures more of the ground truth mask. We have observed

that the CNN model is a high dimensional optimization problem, and we need ensemble
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optimization to get better results.

We have also proposed a parallel flow network referred to as Dense Parallel Network

(DensePN), which provides the ability for feature reuse, and has fewer parameters com-

pared to FCDense56 [7]. DensePN incorporates ideas from HRNet [15] and DenseNet [2].

We have designed the Dense Parallel Network based on three main observations that we

have gained from our initial trials and preliminary studies. First, maintaining a high-

resolution feature map provides good performance. Second, feature reuse is very efficient,

and allows having deeper networks. Third, having a parallel structure can provide better

information flow. Experimental results show that the proposed DensePN provides a better

performance than FCDense56 by having less parameters at the same time.

As future work, we will fine tune the Dense Parallel Network by retraining the model

with higher resolution images. We will also try to expand the filters. Results show that

Dense Parallel Network has a very large potential, and provides promising results. Cur-

rently, it has 46 filters, and we will add more filters to see how it performs. —
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